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Abstract

Accurately estimating heterogeneous treatment effects (HTE) is various domains
such as personalized medicine, marketing campaigns, public policy and educa-
tional interventions. In this paper, we introduce an approach motivated by the
concept of ‘multi-calibration’ from the recent advancements in machine learning.
Our method seeks to reduce the bias in treatment effect estimates across a diverse
set of subpopulations, which are identifiable by a model family, such as decision
trees, linear models, and deep neural networks. A key benefit of our approach is
its ability to provide HTE estimates with an upper limit on the estimation error for
the Conditional Average Treatment Effect (CATE) for any subgroup determined
by a model classifier. Specifically, for decision trees, our algorithm implements
an iterative boosting technique, while for linear models and deep neural networks,
it focuses on optimizing certain objective functions. To validate the efficacy of
our approach, we apply it to synthetic datasets and demonstrate that it achieves
enhanced multi-calibration and more equitable outcomes in subsequent decisions,
surpassing the performance of other prevalent HTE estimation methods.

1 Introduction

Randomized controlled trials (RCTs), also known as controlled experiments or A/B testing, are
widely recognized as a gold standard for estimating the causal impact of policies, medical treat-
ments, computer algorithms, or business strategies (Imbens & Rubin, 2015). The average treatment
effect is a key metric used to describe the impact of such interventions. With the increasing sample
sizes of modern RCTs, it has become possible to analyze heterogeneous treatment effects, which are
the average treatment effects conditional on subgroups determined by specific covariates (Athey &
Imbens, 2016; Athey et al., 2019). This analysis enables the customization of downstream decisions,
such as in personalized medicine or targeted advertising.

However, there is a pressing need to enhance the precision and calibration of heterogeneous treat-
ment effect estimation. While conditional treatment effects provide valuable insights for decision-
making based on subgroups, they may not fully capture the nuances within these subgroups, leading
to suboptimal decisions at the individual level. For instance, in personalized medicine, relying solely
on subgroup averages might lead to less effective treatments for patients whose specific characteris-
tics deviate from the subgroup norm (Tibshirani, 1996).

To address these challenges, we propose a new concept: (G, ϵ)-multicalibration. This approach
aims to predict heterogeneous treatment effects in a manner that aligns with the true conditional
average treatment effects across all possible partitions g ∈ G, where G represents a model family,
such as greedy decision trees with a maximum depth of three and ϵ is an error bound. Our (G, ϵ)-
multicalibrated method offers a more accurate and flexible estimation of heterogeneous treatment
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effects, enabling precise predictions for diverse treatment groups and supporting targeted policies
based on machine learning classifiers.

This enhanced framework for estimating individual treatment effects holds significant potential for
applications like personalized medicine and targeted advertising. By allowing for more accurate
intervention targeting, our approach could lead to improved patient outcomes in healthcare and more
effective marketing strategies in business. Moreover, a more precise estimation of heterogeneous
treatment effects can contribute to greater fairness and equity, preventing potential disparities in
resource allocation and treatment arising from imprecise estimations.

2 Related Work

In this section, we review the relevant literature in the context of our study, which falls into three
main areas: (1) calibration and multi-calibration; (2) heterogeneous treatment effects (HTE); and
(3) machine learning for causal inference.

Calibration. Calibration is a fundamental concept in statistics and machine learning, focusing
on the alignment of predicted probabilities with actual observed outcomes (DeGroot & Fienberg,
1983). Recent work has extended the notion of calibration to multi-calibration (Hébert-Johnson
et al., 2018), which addresses the need for calibrated predictions across different subgroups given
a model family. These concepts have been applied to various settings, including classification and
regression tasks, to improve the reliability and interpretability of predictions.

Heterogeneous Treatment Effects (HTE). Estimating HTE has been a key challenge in causal
inference and econometrics, as it allows for more tailored policy recommendations and decision-
making (Heckman et al., 2006). Recently, machine learning techniques have been employed to
capture complex effect heterogeneity and estimate heterogeneous treatment effects. Athey & Im-
bens (2016) proposed a decision tree-based algorithm to split the population into disjoint partitions
where there are large differences in average treatment effects conditional on subgroups. Wager &
Athey (2018); Athey et al. (2019) extend this tree approach to random forests, which show better
asymptotic properties. Künzel et al. (2019) propose the ‘x-learner’ approach, which addresses the
conventional issue of using separate prediction models for treatment and control groups without
considering the propensity of treatment (i.e., the probability of treatment given covariates).

Machine Learning for Causal Inference The intersection of machine learning and causal inference
has received increasing attention in recent years, with a focus on leveraging powerful machine learn-
ing techniques to improve causal effect estimation (Athey, 2017). This includes the development of
causal trees and forests (Athey et al., 2019), which extend classical decision trees and random forests
to capture treatment effect heterogeneity. Other methods, such as doubly robust estimation (Bang
& Robins, 2005) and targeted maximum likelihood estimation (Van Der Laan & Rubin, 2006), have
also been proposed to address the challenges of causal inference in high-dimensional settings.

Our study builds upon these areas of research by proposing the (G, ϵ)-multicalibrated approach for
estimating individual treatment effects (ITE), which addresses the limitations of existing methods
and offers a more flexible and accurate framework for ITE estimation. By combining the strengths
of multi-calibration, heterogeneous treatment effect estimation, and machine learning for causal
inference, our approach aims to contribute to the ongoing advancements in these fields.

3 Multi-calirbated individual treatment effect

Consider a super-population with samples (Yi(1), Yi(0), Xi) ∼ D. Here, Yi(1) and Yi(0) represent
the potential outcomes for individual i under treatment and control conditions, respectively, and Xi

are the associated covariates for individual i. Let X be the covariate space.

Let τi = Yi(1) − Yi(0) be the true individual treatment effect for each individual i. The the fun-
damental problem of causal inference, i.e. we can only observe one outcome for each unit (Yi(1)
or Yi(0)), poses challenges to accurately estimate the treatment effects. We let τ̂(X) denote the
estimated treatment effect given feature X . We denote τ̂i = τ̂(Xi) as the estimated treatment effect
for individual i.
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We propose the notion of (G, ϵ)-multicalibration as a measure of the precision of individual treatment
effect predictions. For each possible partition of the covariate space, defined by a binary classifier
g ∈ G, where G is a model family that maps and g : X → {−1, 1}, and given a predetermined
tolerance threshold ϵ, and the estimator τ̂ , we have the definition of (G, ϵ)-multicalibration.

Definition 1 ((G, ϵ) multicalibration). An estimation function of individual treatment effect τ̂ is said
to be (G, ϵ) multicalibrated if, for each classifier g in model family G and g : X → {−1, 1}, we
have:

R(g, τ̂) = ED[g(Xi)(τi − τ̂i)] < ϵ (1)

Note that because g is a binary classifier we have

R(g) = (τ(g, 1)− ED[τ̂i|g(Xi) = 1])P[g(Xi) = 1]

− (τ(g,−1)− ED[τ̂i|g(Xi) = −1])P[g(Xi) = −1],
(2)

where τ(g, 1) = ED[τi|g(Xi) = 1] and τ(g,−1) = ED[τi|g(Xi) = −1].

Intuitively, the largest possible value for R would occur under the condition that g(Xi) is +1 when
τi − τ̂i > 0 and g(Xi) is −1 otherwise. This definition is equivalent to R(g∗, τ̂) < ϵ where
g∗ ∈ arg supg∈G R(g, τ̂).

In empirical settings with sample size N , a major causal inference challenge is that we do not know
the true effect τi for any individual. This is why we run randomized experiments (or A/B tests) to
estimate treatment effects. We consider a randomized experiment that assigns individuals either to
treatment (Zi = 1) or control (Zi = 0). Z represents random assignment and follows a probability
distribution PZ. We assume no interference and thus yi(1), yi(0), Xi|Zi (this is called Stable Unit
Treatment Values Assumption or “SUTVA”). Yi = Ziyi(1) + (1 − Zi)yi(0), which means the
observed outcome. Note that here only Xi, Yi, and Zi are known, but the potential outcomes are
unknown.

As τ(g, 1) and τ(g,−1) are not observed, we compute the empirical risk given the finite sample:

R̃(g) =
1

N

(
N∑
i=1

(τ̃(g, 1)− τ̂i)1[g(Xi) = 1]−
N∑
i=1

(τ̃(g,−1)− τ̂i)1[g(Xi) = −1]

)
(3)

where τ̃(g,m), where m = +1 or −1, is the sample estimation (e.g., difference in means) for the
average treatment effect given all samples where g classifies to label m.

In our study, we focus on the Horvitz–Thompson Estimator2, that is:

τ̃(g,m) =

∑N
i=1 YiZi1[g(Xi) = m and Zi = 1]

p
∑N

i=1 YiZi1[g(Xi) = m]
−
∑N

i=1 Yi(1− Zi)1[g(Xi) = m and Zi = 0]

(1− p)
∑N

i=1 Yi(1− Zi)1[g(Xi) = m]
(4)

If we can ensure that for g∗ ∈ arg supg∈G R(g, τ̂), R(g∗) < ϵ, and the empirical satisfaction
R̃(g) < ϵ, then our method is successful in achieving (G, ϵ)-multicalibration.

4 Multicalibration algorithm

4.1 Boosting algorithm

Next, we present a boosting algorithm that finds a solution satisfying the (G, ϵ)-multicalibration
condition, as discussed in the previous section. We start with an initial individual treatment effect
estimator τ̂0(·), where τ̂0i is the individual treatment effect estimation for unit i. The algorithm is
shown in Algorithm 1.

2In the causal inference literature empirically it is a way common way to replace this

Horvitz–Thompson type estimator with Hájek estimator, i.e. τ̃(g,m) =
∑N

i=1 YiZi1[g(Xi)=m and Zi=1]∑N
i=1 1[g(Xi)=m and Zi=1]

−∑N
i=1 Yi(1−Zi)1[g(Xi)=m and Zi=0]∑N

i=1 1[g(Xi)=m and Zi=1]
.
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Algorithm 1 Multi-Calibrated Boosting Algorithm

Require: Xi, Yi, Zi: training data
Require: ϵ: expected value for ϵ
Require: α: learning rate

1: Initialize τ̂0i =
∑

i YiZi∑
i Zi

−
∑

i Yi(1−Zi)∑
i (1−Zi)

for all i, {Compute the average treatment effect}
2: for t = 1, 2, · · · do
3: Find gt,mt = argmaxg∈G R̃(g) {Find a mapping g that maximizes the absolute difference

between observed and predicted values}
4: if R̃(gt) < ϵ then
5: τ̂∗ = τ̂ t

6: Break {Check for convergence: if the absolute difference weighted by the probability is
below the tolerance, terminate}

7: end if
8: Set dt+1 =

∑N
i=1(τ̃(g

t,+1)−τ̂i)1[g
t(Xi)=1]∑N

i=1 1[g
t(Xi)=1]

9: Set dt−1 =
∑N

i=1(τ̃(g
t,−1)−τ̂i)1[g

t(Xi)=−1]∑N
i=1 1[g

t(Xi)=−1]
{Compute the expected difference between ob-

served and predicted values for the chosen group}

10: Update τ̂ t+1
i =

{
τ̂ ti + αdt+1 if gt(Xi) = +1
τ̂ ti + αdt−1 if gt(Xi) = −1

{Update the predicted values for the next

iteration}
11: end for
12: return τ̂∗i

This boosting algorithm iteratively refines the treatment effect estimation, ensuring that the (G, ϵ)-
multicalibration condition is satisfied. If the algorithm converges, it returns the current τ̂ ti ; otherwise,
it indicates that the condition cannot be satisfied.

Theorem 1 (Convergence). With yi(1) and yi(0) bounded in [−B,B], the Multi-Calibrated Boost-
ing Algorithm converges within O(1/ϵ2).

Proof. We first set a loss function that is denoted by L.

Let τ̂ be the N -dimensional vector of estimated treatment effects. Let γ be another N -dimensional
vector where γi = Yi(Zi/p− (1− Zi)/(1− p)), note that E[γi] = τi.

L =
1

N
∥γ − τ̂∥22.

When initialized, L0 = 1
N (B + τ̄)2, where τ̄ is the average treatment effect estimation from the

sample.

Assume that after iteration t (with estimation τ̂ t, and we use τ to denote the N -dimensional vector
of the training set), the algorithm has not converged, which means that there exists g ∈ G such that
R̃(g) > ϵ.

Let gt+1 = arg supg∈G |R̃(g)|, and G be the N -dimensional vector where Gi = gt+1(Xi), and we
aim to find τ̂ t+1 to maximally reduce the loss (and accordingly we define the vector τ̂ t+1).

Let d be an N -dimensional vector such that τ̂ t+1 = τ̂ t +∆⊙G.

The reduction of loss would be:

Lt+1 − Lt = 1
N ∥γ − τ̂ t+1∥22 − 1

N ∥γ − τ̂ t∥22 = (d⊙G)T (2γ − 2τ̂ t − d⊙G).

To maximize the reduction, the optimal d should be:

d∗ = (γ − τ̂ )TG.
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Then,

Lt+1 − Lt =
1

N
∥γ − τ̂ t∥22.

Note that, by the Cauchy-Schwarz inequality:√
1

N
(γ − τ̂ )T (γ − τ̂ ) =

√
(
1

N
GTG) · ( 1

N
(γ − τ̂ )T (γ − τ̂ )) ≥ R̃(g) =

1

N
[GT (γ − τ̂ )] > ϵ.

Then we get
Lt+1 − Lt > ϵ2

which means the loss reduces more than ϵ2 per iteration. Since the loss should not be less than 0 and
starts from a bounded positive value, it would converge within O(1/ϵ2).

We next introduce a lemma:

Lemma 1. With poly(ϵ) samples,

sup
g∈G

|R(g)− R̃(g)| ≤ ϵ

This allows us to prove the sample complexity of the algorithm.

Theorem 2 (Sample complexity). With poly(ϵ) samples, the Multi-Calibrated Boosting Algorithm
outputs τ̂∗ that is (G, 2ϵ) multi-calibrated.

Proof. Since by Lemma 1, supg∈G |R(g)− R̃(g)| ≤ ϵ, thus

sup
g∈G

|R(g)| ≤ ϵ+ sup
g∈G

|R̃(g)| < 2ϵ

Therefore, τ̂∗ that is (G, 2ϵ) multi-calibrated.

4.2 General binary classifiers

In addition to the boosting tree algorithm, we also consider general binary classifiers, denoted by
q(Xi) ∈ [0, 1]. We can rewrite the expectation as follows:

E[g(Xi)(τ̃i − τ̂i)] = E[(τ̃i − τ̂i)|g(Xi) = +1]P[g(Xi) = +1]− E[(τ̃i − τ̂i)|g(Xi) = −1]P[g(Xi) = −1]

=

N∑
i=1

(2q(Xi)− 1)(Yi(
Zi

p
− 1− Zi

1− p
)− τ̂)

(5)

That is, finding the supremum of E[g(Xi)(τ̃i − τ̂i)] over all possible q is equivalent to finding the
classifier where the outcome is τ̃i − τ̂i = (Zi

p − 1−Zi

1−p )Yi − τ̂i.

This observation provides a way to adapt any binary classifier based on loss optimization for the
purpose of multi-calibration. By optimizing the classifier to predict the outcome (τ̃i − τ̂i), we can
find a classifier that maximizes the expected difference between the estimated treatment effect and
the true treatment effect. This allows us to leverage the power of various binary classifiers to achieve
multi-calibrated estimators.

In practice, we use stochastic gradient descents to find the q that leads to the greatest R(g), update
ˆtaui as in the gradient boosting algorithm, and do this iteratively until convergence.
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Figure 1: Scatter plot of units’ individual true effects versus predicted effects. The red line has a
slope of 1.

5 Experiments

5.1 Setup

We simulated a dataset with 5,000 observations to examine the causal effects of a binary treatment
variable. The covariate matrix, denoted as Xi, was generated by drawing random samples from a
uniform distribution between 0 and 1 for each of the five covariates (Xi1, Xi2, Xi3, Xi4, Xi5) in the
dataset, Xik ∼ Unif[0, 1] where k = 1, 2, · · · , 5.

We then defined two potential outcomes, Yi(1) and Yi(0), to represent the outcomes under treatment
and control conditions, respectively. The potential outcome under treatment, Y1i, was calculated as
the product of the first three covariates (Xi1Xi2Xi3) plus the product of the last two covariates
(Xi4Xi5): Yi(1) = Xi1Xi2Xi3 +Xi4Xi5.

The potential outcome under control, Yi(0), was defined as the product of the last two covariates
(Xi4Xi5): Yi(0) = Xi4Xi5.

The treatment assignment variable, Zi, was generated as a binary variable with values 0 or 1, with
equal probability, to simulate random assignment to treatment or control groups: Zi ∼ Bern(0.5).

Finally, the observed outcome, Yi, was determined by the treatment assignment, such that if an
individual was assigned to the treatment group (Zi = 1), their observed outcome was Y1i, and if
they were assigned to the control group (Zi = 0), their observed outcome was Y0i

Yi = Yi(1)Zi + Yi(0)(1− Zi) (6)

This setup allows for the estimation of causal effects by comparing outcomes between the treated
and control groups while accounting for potential confounders captured by the covariates.

5.2 Preliminary Results

We use a decision tree with a maximum depth of 3, with a learning rate of 0.4 and iteration times of
100, as an example, we present the prediction results in Fig 1. The red line indicates the line with a
slope of 1. As observed in the figure, most dots (each indicating a unit) have a predicted individual
treatment effect close to their true effect. There are only a few points that have large treatment effects
where we slightly underestimate the individual effect. This is because our boosting algorithm tends
to avoid identifying subgroups that contain a small number of units.
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